

Yogesh Teli: AVP, BASE24 Development at Barclays Bank

Drew Bauernschmidt: Product Analyst, Gravic, Inc.

September 2023

Introduction

My profile

- Yogesh Teli, AVP, BASE24™ Development at Barclays Bank
- Chairman and Board Director of ITUG/BITUG
- Extensive experience in payments technology
 - ATM / POS / EftPos / Switches
 - Card systems debit / credit / smart cards
 - National and international payment systems

Disclaimer

- These are my views and not those of Barclays Bank
- This information is based on my experience on the project over the past few years
- My work for this Active/Active project was based around BASE24 environments
- Other aspects of the Barclays Active/Active project will not be discussed

Agenda

- 1. About Barclays
- 2. Project background
- 3. Proof of concepts (POCs)
- 4. Implementation
- 5. Summary and next steps

About Barclays

About Barclays

- Major, diversified global financial institution
- Wide range of products and services
- Barclays UK providing retail banking to UK market, including ATM and POS
- c.20 million customers through Barclays UK
- 87,400 employees worldwide (44,000 in UK)

Reference: https://home.barclays/content/dam/home-barclays/documents/investor-relations/reports-and-events/annual-reports/2022/AR/Barclays-PLC-Annual-Report-2022.pdf

HPE NonStop environment

Hardware

_ ATM devices: 4,700

- HPE NonStop systems: four servers

Production: two NS7s (quad core), six CPUs each

 Test: one NS3 with four CPUs (dual core) and one NS3 with two CPUs (dual core)

Applications

BASE24™: six environments

Transaction Security Services (TSS): three environments

– HPE NonStop Shadowbase: three instances

Transactions (2022)

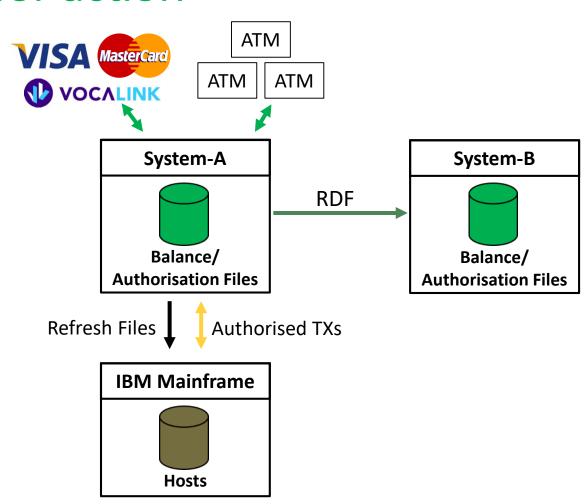
_ ATM: 475 million

POS: 5,500 million

Transaction peak (2022)

_ ATM: 60 tps

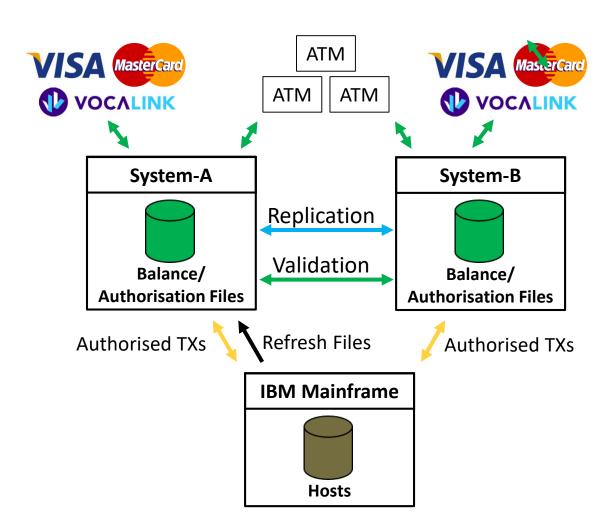
POS: 450 tps



Project Background

Old architecture and need for action

Previous environment


- BASE24™ supporting ATM and POS transactions in Active/Passive architecture
- Regular DR exercises to build confidence which increased system downtime
- Active/Passive architecture using RDF did not provide level of availability desired
- RDF limitations
 - RDF works in uni-directional, Active/Passive mode only and is configured for volume/subvolume-based replication
 - RDF is in "mature" status and will not be enhanced to meet future requirements

New architecture

Requirements

- Active/Active data centre
- Both sites are fully active, but tightly coupled
- Both systems process ATM/POS transactions
- Databases actively accessed
- Full utilization of data assets
- Data collisions may occur but will automatically be resolved
- Faster RTO using bi-directional replication
- Eliminate need for planned downtime

Selecting a solution for the Active/Active architecture

Proof of Concepts (POCs)

- Several POCs undertaken at various times
- Additional steps
 - Upgrade HPE NonStop systems
 - Work with Schemes to become Active/Active
- Considerations
 - Replication speed and reliability
 - Ability to identify types of updates and collision management
 - Ability to resynchronise following a system failure
 - Database creation from existing PROD/DR systems

Timeline

2018	Compare several replication products available in the market	
2020	Evaluate and performance test identified replication products	
2021/2022	Confirm the chosen product meets the requirements	
2022/2023	Design, test, train and implement	

Technical evaluation

Evaluation scorecard based on key factors were rated

- ₋ 8 main criteria
- 29 sub-criteria

Other considerations

- Corporate relationship
- Long-term support
- Knowledgeable staff still at company
- Future enhancements
- Sunset or active roadmap?

Criteria	Prod A	Prod B	Prod C	Comments	
DOCUMENTATION					
LEARNABILITY					
COMMUNITY SUPPORT					
USABILITY					
FUNCTIONALITY					
INTEGRATION WITH B2	4				
PERFORMANCE					
PRICE					
0 - Not Supporte	d				

- 1 Poor
- 2 Fair
- 3 Good
- 4 Very Good
- 5 Excellent

Solution choice: HPE Shadowbase

Why HPE Shadowbase was selected

- Strong technical evaluation and POC results
- Excellent long-term relationship with HPE and focus on HPE NonStop systems
- HPE markets, sells, and supports Shadowbase products
- Gravic provides very good additional support and professional services
- HPE is a known entity and an approved vendor, which reduced procurement time
- No need for new procurement procedure (which would have impacted project timeline)

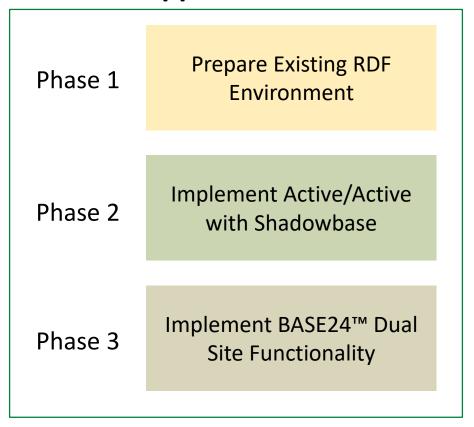
Implementation

Implementation considerations

ACI BASE24™

- BASE24 Dual Site functionality
- Utilize standard (P)TLFs

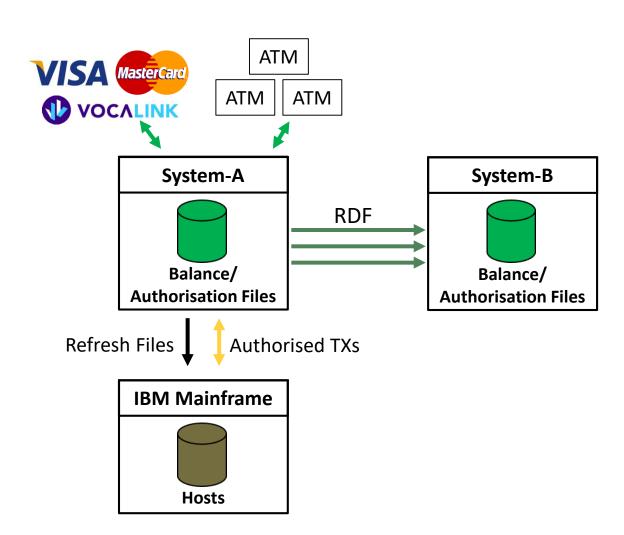
HPE Shadowbase


- Supports key aspects of BASE24 functionality
- Enhanced to enable BASE24 Dual Site functionality
- Works in both uni-directional and bi-directional mode
- File level replication which allows full control of files that need to be replicated
- More complex configuration, but with better management
- Innovative design to create copies of merged (P)TLFs

Implementation approach

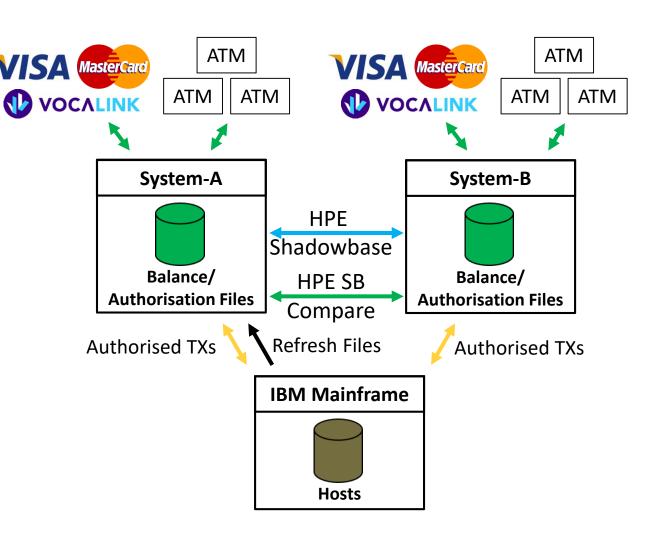
Testing and implementation time

- Phased approach based on number of BASE24™ environments vs Shadowbase instances
- Migration/testing about 12 months elapsed time
- Implementation about 4 months elapsed time


Phased Approach

Migration Phase 1

Beginning state


- Activities
 - Modify RDF to allow for a 3-phased
 Shadowbase replacement
 - Complete Shadowbase training
 - Create Shadowbase BASE24™ environments
 - Run RDF and Shadowbase side-by-side uni-directionally to prove each phase works
 - Replace each RDF phase with Shadowbase uni-directionally

Migration Phase 2

Current state

- Activities
 - Implement Shadowbase A/A partitioned architecture
 - Implement Merged and Exact TLF processes
 - Create three Shadowbase instances per system
 - Utilise six BASE24™ environments per system
 - Work on interchanges to ensure all support A/A
 - Reconfigure device connectivity
 - Reconfigure IBM Mainframe connectivity

BASE24™ environments vs. Shadowbase instances

Phase 1

FHM to update/refresh database files

Replicates authorisation and balance databases

SB instance "C"

Phase 2

Credit, ATM Debit, TSS

LOG files for Merged and Exact

Replicates standard databases

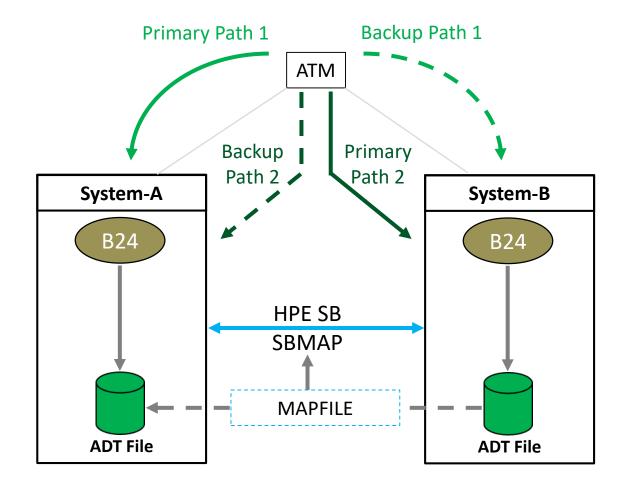
Creates Merged and Exact log files

SB instance "A"

SB instance "DA" & "E"

Phase 3

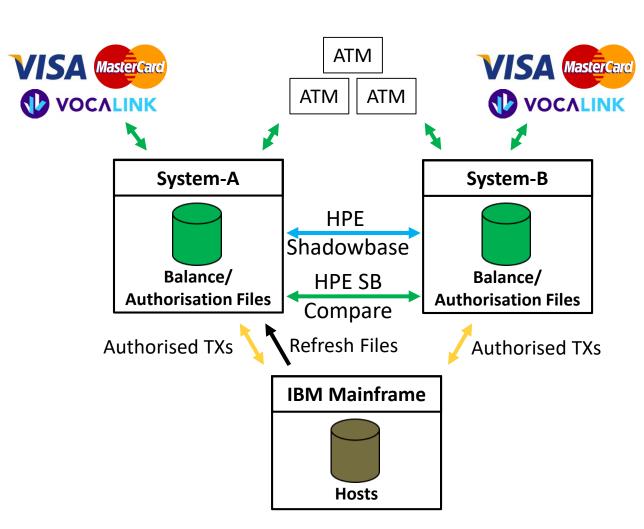
POS debit, TSS


Replicates standard databases

SB instance "B"

Migration Phase 2

New state


- Activities
 - Utilising BASE24™ Dual Site functionality
 - Implementing Shadowbase Dual Site functionality
 - Reconfiguring device connectivity
- HPE Shadowbase Data Mapping Facility (SBMAP)
 - SBMAP scripting vs. writing User Exits
 - Saved time
 - Reduced costs

Migration Phase 3

Final state

- Activities
 - Utilise BASE24™ Dual Site functionality
 - Implement Shadowbase Dual Site functionality
 - Configure Shadowbase data collision resolution logic
 - Reconfigure device connectivity
- Target implementation date
 - Future ☺

Summary and next steps

Summary

Technical objectives met:

- ✓ Active/Active data centre
- Both sites are fully active, but tightly coupled
- ✓ Both systems process transactions
- Databases actively accessed
- ✓ Full utilisation of data assets
- Data collisions may occur but will automatically be resolved
- ✓ Faster RTO using bi-directional replication
- ✓ Eliminate need for planned downtime

Business outcomes met:

- Continuous availability: Active/Active payments engine
- ✓ Utilises full infrastructure
- Better resiliency: improved recovery service
- ✓ Increased capability
- ✓ Improved technical solution

Next steps:

- Implement Shadowbase full active/active architecture
- Reconfigure device connectivity

HPE Shadowbase perspective

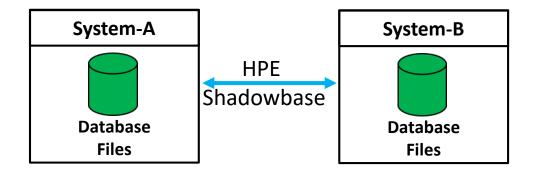
One product, many solutions

Business Continuity

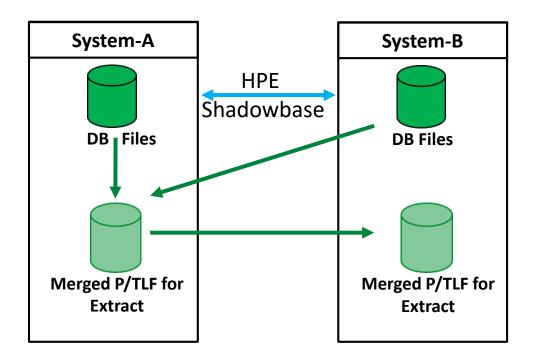
Data Integration

Zero Downtime Migration (ZDM)

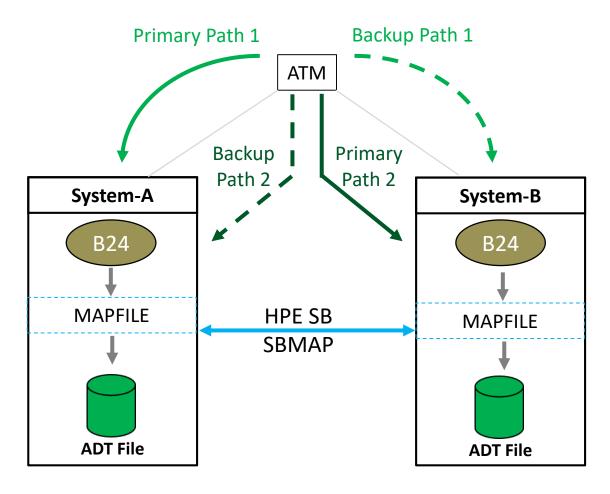
Essentials Bundle


Compare & Repair

Application Integration


HPE Shadowbase bi-directional replication for Active/Active applications

- Modeled after well-known NonStop products, like Pathway
- No intercept library, so can be upgraded while application keeps running
- Bi-directional mode ensures files on both systems are kept in sync
- Ensures that replicated changes are not replicated back
- Bi-directional replication uses the same core components
- Highly customizable to meet customer requirements


HPE Shadowbase settlement and extract processing

- Unique settlement and extract processing requirements
- General database files kept in sync
- Log files (P/TLF) needed to be merged from both systems and replicated back to meet:
 - The requirement to run multiple extracts on the NonStop
 - The ability to run on either node
 - The ability to resume from last point on either node regardless of place of last extract

Current progress: HPE Shadowbase Mapping Facility (SBMAP)

- SBMAP scripting vs. writing User Exits
 - An SQL-like scripting facility for transforming large data sets
 - Alters field based on the system where the transaction originated
- Additional features
 - Add, Drop, Rename Columns, and Apply Event Filtering
 - Reference and Utilize External Tables
 - Replicate Before and After Image Values
 - Supports Parallelism

Keys to success

Close collaboration across multiple teams at Barclays, Gravic, and HPE

- Open exchange of ideas and approaches
- Thorough testing performed independently
- Open discussions of any issues uncovered during testing and all proposed solutions

Thank You

Questions?

Contact info

Yogesh: Yogesh.Teli@Barclays.com

Drew: ABauernschmidt@Gravic.com